Формирование паттернов

We use cookies. Read the Privacy and Cookie Policy

В 2009–2010 годах выдалась одна из самых холодных зим в Северном полушарии за последние десятилетия. Для меня это было время великой радости и великой скорби (фото 12.1). Радости, потому что мир прекрасен, когда вокруг все покрыто белым снегом. И скорби, потому что, как бы красиво ни выглядели кристаллы льда на окнах автомобиля, я не люблю при минус десяти градусах по Цельсию скакать вокруг своей машины со скребком.

Пока занимаешься размораживанием автомобиля, легко забыть, какое же это чудесное явление – снег.

Кристаллам льда, которые образуются в турбулентных воздушных потоках, присуща симметрия и случайность, а еще особая красота неопределенности, распространяющаяся в шести направлениях. ‹…› Пока растущая снежинка летит к земле (а обычно это занимает час или больше), формирование ее лучей в каждый момент зависит от температуры, влажности и загрязненности атмосферы. Размер каждой снежинки не превышает одного миллиметра, и на шесть ее лучей воздействует одна и та же температура. А поскольку законы роста снежинок детерминистские, они поддерживают в снежинках почти идеальную симметрию[72].

Снежинки – отличный пример самоорганизующихся паттернов (рис. 12.4). Природа изобилует и другими примерами, такими как полосы на зебрах, пятна на крыльях бабочек, дюны в пустыне Сахара и листья папоротника [Waldrop 1992: 65]. Паттерны образуются и в жидкостях. Так, было обнаружено, что в каждом океане имеются течения в виде полос шириной 150 километров, которые попеременно текут то с востока на запад, то с запада на восток со скоростью около 40 метров в час. Говорят, что ни одному ученому еще не удалось придумать объяснение этого феномена, охватывающего весь земной шар [Brahic 2008: 10].

Паттерны возникают не только в пространственной форме. Для живых систем решающее значение имеют циклические колебания, такие, например, как циркадные ритмы (или биологические часы), влияющие на сердцебиение, сон, а также периодические явления, происходящие в гормональных и ферментных системах [Lewin 1999: 29]. Еще одним красивым примером из мира природы, часто упоминаемым в литературе по теории сложности, будут светлячки, живущие в Юго-Восточной Азии. В брачный период они в невообразимых количествах слетаются на деревья и мерцают в гармоничном ритме [Gleick 1987: 293].

Случаи возникновения паттернов в сложных системах – это эмерджентные события. Невозможно указать, какой именно из агентов обуславливает возникновение того или иного паттерна, и тем не менее эти паттерны существуют.

С точки зрения теории сложности не все паттерны похожи друг на друга. Есть важное различие между листьями папоротника и дюнами в Сахаре. Или между гармоничным миганием светлячков на деревьях и расходящимися по поверхности бассейна концентрическими кругами после того, как я уронил туда свой мобильный телефон. Разница в том, что некоторые паттерны имеют практический смысл, в то время как другие существуют только как интересный побочный эффект. Формирование кристалликов льда на окнах моей машины не преследует никакой цели (если не считать целью заставить меня поработать скребком). Но есть вполне практические причины, почему мое сердцебиение ускоряется (оставаясь тем не менее регулярным) в ситуации, когда моя машина скользит по обледенелой дороге.

Совершенно очевидно, что и в вашей компании при формировании команд и осуществлении коммуникации образуются как пространственные, так и временны?е паттерны. Ими заполнена вся Вселенная, так почему же они не должны существовать в командах разработчиков? Однако, чтобы возникающие паттерны имели смысл, необходимо, чтобы менеджеры позволяли им возникать в результате самоорганизации. Отдельному менеджеру не под силу управлять командами так, чтобы те «прошли кристаллизацию», или заставить членов команды мерцать в гармоничном ритме. Конечный результат никогда не будет выглядеть так же хорошо, как в случае самоорганизации.

Прежде чем мы начнем обсуждать организационные модели в главе 13, нам необходимо рассмотреть вопросы, связанные с масштабированием систем.