Шаблон ИИ
В ЛСР мы много раз наблюдали использование преимуществ технологий машинного обучения для разработки новых инструментов ИИ. Каждая компания в лаборатории работает над созданием конкретных инструментов, и некоторые ориентируются на потребителей, а большинство – на корпоративных клиентов. Последние исследуют возможности идентификации задачи внутри рабочего процесса и строят свой бизнес на предоставлении инструмента, обеспечивающего соответствующий прогноз.
В ходе консультаций мы обнаружили, что решения удобно делить на следующие составляющие (см. рис. 5.1): прогноз, входные данные, суждение, обучение, действие, результат и обратная связь. Затем мы разработали «шаблон ИИ», упрощающий декомпозицию задач для выяснения потенциальной роли прогностической машины (рис. 11.1). Шаблон помогает обдумывать, строить и анализировать инструменты ИИ. Он задает порядок определения каждой составляющей решения задачи и вносит ясность в их описание.
Рис. 11.1. Шаблон ИИ
Чтобы проверить шаблон в действии, рассмотрим стартап Atomwise, предлагающий прогностический инструмент, созданный для сокращения времени на разработку эффективных лекарственных средств. Существуют миллионы молекул фармацевтических препаратов, но покупка и тестирование каждого стоят времени и денег. Как же компании отбирают их для тестирования?
Они выносят обоснованное предположение, то есть прогнозируют, исходя из исследований эффективности использования молекул в лекарственных средствах.
СЕО Atomwise Абрахам Хейфец объяснил нам научную подоплеку: «Чтобы лекарство работало, оно должно связывать вредоносные компоненты и в то же время не связывать белки печени, почек, сердца, мозга и других органов, из-за чего возникают токсические побочные эффекты. То есть все сводится к тому, чтобы “делать то, что нужно, и не делать того, что не нужно”».
Итак, если фармацевтические компании смогут прогнозировать связывающую способность вещества, то определят, какие молекулы им необходимы. Atomwise предлагает для прогноза инструмент ИИ, более эффективно выполняющий задачу идентификации потенциальных лекарственных средств. Инструмент использует ИИ для прогноза связывающей способности молекул, поэтому Atomwise может рекомендовать фармацевтическим компаниям ранжированный список молекул с максимальной способностью связывания белка болезней. Например, Atomwise составит список двадцати молекул с самой высокой такой способностью – скажем, вируса Эбола. Вместо тестирования молекул по одной прогностическая машина Atomwise проверит миллион возможностей. И хотя фармацевтическим компаниям все равно необходимо будет проведение тестов и проверка молекул с помощью человеческих и машинных суждений и действий, ИИ существенно снизит издержки и повысит скорость выполнения задачи.
Где применяется суждение? В определении суммарной ценности конкретной перспективной молекулы для фармацевтической промышленности. Ценность выражается в двух критериях: эффективность лечения и вероятные побочные эффекты. При выборе веществ для тестирования компании необходимо определить отдачу от эффективности лечения и издержки побочных эффектов. Как отметил Хейфец, «побочные эффекты более допустимы в химиотерапии, чем в креме от прыщей».
Прогностическая машина Atomwise учится на данных по связывающей способности. На июль 2017 года она обработала 38 млн опубликованных и еще больше приобретенных и выученных данных на эту тему. Каждый фрагмент данных состоял из молекулы и характеристик белка, а также степени их связи. Чем больше прогностическая машина выдает прогнозов, тем больше получает обратной связи и постоянно совершенствуется.
Используя машину и данные по характеристикам белка, Atomwise прогнозирует, у каких молекул самая высокая связывающая способность. По тем же данным он может прогнозировать наличие высокой связывающей способности у веществ, которые никогда раньше не производились.
Заполним шаблон (рис. 11.2) декомпозиции задачи Atomwise по отбору молекул, для чего определим следующее.
Рис. 11.2. Шаблон ИИ для Atomwise
• Действие. Что вы пытаетесь сделать? Atomwise тестирует молекулы с целью излечения и профилактики заболеваний.
• Прогноз. Что необходимо знать для принятия решения? Atomwise прогнозирует связывающую способность перспективных молекул и белков.
• Суждение. Как оценить исходы и ошибки? Atomwise и его клиенты установили критерии относительной значимости эффективности лечения и относительные издержки возможных побочных эффектов.
• Исход. Каковы критерии успешно выполненной задачи? Для Atomwise это результаты теста. Привел ли он в итоге к созданию нового лекарства?
• Входные данные. Какие данные необходимы для запуска прогностического алгоритма? Atomwise использует данные по характеристикам белков крови (или тканей) заболевшего органа (или организма в целом).
• Обучающие данные. Какие данные требуются для обучения прогностического алгоритма? Atomwise применяет данные по связывающей способности молекул и белков наряду с их характеристиками.
• Данные обратной связи. Как усовершенствовать алгоритм посредством информации об исходах? Для улучшения будущих прогнозов Atomwise учитывает результаты тестов независимо от их успешности.
Ценностное предложение Atomwise основано на инструменте ИИ, выполняющем задачу прогнозирования в рабочем процессе, направленном на изыскание лекарственных препаратов. Он снимает задачу прогнозирования с человека. Для ее выполнения он собрал комплект уникальных данных для прогнозирования связывающей способности фармацевтических веществ. Прогностическая ценность заключается в сокращении издержек и повышении вероятности успешного открытия новых лекарств.
Клиенты Atomwise используют прогноз в сочетании с собственным профессиональным суждением об отдаче от молекул с различающейся связывающей способностью к разным видам белков.