Выводы

• Прогностические машины представляют собой ценность:

• потому что почти всегда дают более точный, быстрый и дешевый прогноз, чем люди;

• прогноз есть ключевая составляющая принятия решений в неопределенности;

• решения принимаются повсеместно в экономической и частной жизни.

• Однако сам по себе прогноз – не решение, а только одна из его составляющих; остальные – суждение, действие, исход и три типа данных (входные, обучающие и обратной связи).

• Разбив решение на составляющие, мы можем проследить влияние прогностических машин на ценность человека и других ресурсов. Ценность аналогов прогностических машин, а именно человеческих прогнозов, будет снижаться. При этом ценность других составляющих, таких как навыки человека в сборе данных, вынесении суждения и совершении действий, будет расти. Лондонские таксисты вложили три года в получение знаний – необходимых для прогноза кратчайшего пути из одной точки в другую в конкретное время суток, – и их профессионализм с появлением прогностических машин никуда не делся. Но и другие водители теперь могут выбирать оптимальный маршрут с помощью прогностических машин. Прогностические навыки таксистов больше не являются дефицитным ресурсом. А навыки вождения и человеческие «датчики» (глаза и уши) были и у других водителей, а сейчас стали эффективнее благодаря прогностическим машинам, что привело к росту конкуренции.

• Суждение заключается в определении относительной отдачи для всех возможных исходов решений, как «верных», так и ошибочных. Суждение представляет собой необходимый этап принятия решений и требует уточнения преследуемой цели. Поскольку прогностические машины выдают все более точные, быстрые и дешевые прогнозы, ценность человеческих суждений будет расти вследствие повышения спроса.