Машинное обучение в облаке и на устройстве

ИИ совершенствуется в реальности, результаты используются для улучшения прогнозов. Как правило, компании собирают данные реальных условий для улучшения машины до выпуска обновленной прогностической модели.

Автопилот Tesla не учится на практике с реальными клиентами. В процессе езды он отправляет данные в облако Tesla, где они накапливаются и используются для обновления автопилота. Затем выпускается следующая версия. Обучение происходит в облаке.

Такой стандартный подход хорош тем, что пользователи защищены от плохо обученных версий. Но у него есть и минусы – обычно ИИ находится на устройстве и не может учитывать быстро меняющиеся местные условия до тех пор, пока их не внесут в обновление; с точки зрения пользователя, улучшения происходят рывками.

Но представьте, что ИИ учится и совершенствуется в реальной среде. Тогда он сможет быстрее реагировать на смену обстановки и оптимизироваться под разные условия. В среде, где все быстро меняется, разумнее улучшать прогностические машины непосредственно на устройствах. В таких приложениях, как Tinder (приложение для знакомств, где движение по экрану влево означает «нет», а вправо – «да»), пользователи быстро принимают много решений подряд. Эти данные сразу загружаются в прогностическую машину для подбора следующего кандидата на свидание. Вкусы у всех разные и непостоянные, меняются и за год, и в течение дня. В случаях, когда пользователи до определенной степени похожи и у них стабильные предпочтения, подходит отправка в облако с последующим обновлением. Но когда вкусы резко расходятся и часто меняются, пригодится способность совершенствовать прогнозы на уровне устройства.

Компании должны искать компромисс в том, как скоро опыт прогностической машины в реальном мире понадобится для составления новых прогнозов. Мгновенное использование опыта обеспечит быструю адаптацию к местным условиям, но ценой качества.