Выводы

• Прогностические машины повышают отдачу от суждения, поскольку снижением стоимости прогнозов повышают ценность понимания вознаграждения в результате действий. Однако суждение требует издержек. Выяснение вариантов отдачи от разных действий в разных ситуациях требует времени, усилий и экспериментов.

• Многие решения принимаются в условиях неопределенности. Мы решаем взять зонтик, потому что предполагаем, что будет дождь, но он может и не пойти. Мы решаем авторизовать транзакцию, потому что считаем ее правомерной, но можем ошибаться. В условиях неопределенности необходимо выявить варианты отдачи от действий, предпринятых в результате ошибочных решений, а не только верных: неопределенность увеличивает издержки на суждения о вариантах отдачи для данного решения.

• При наличии контролируемого количества пар «действие+ситуация», связанных с решением, можно возложить обязанность по вынесению суждения на прогностическую машину (это «разработка функции вознаграждения»), чтобы она самостоятельно принимала решение после того, как сделает прогноз. Это позволяет автоматизировать решения. Однако чаще количество пар «действие+ситуация» очень велико и поэтому требует слишком много издержек для предварительного программирования всех вариантов отдачи для каждой комбинации, особенно для уникальных и редко встречающихся. В таких случаях суждение человека после выдачи прогноза машиной эффективнее.