Влияние инструментов ИИ на рабочие процессы

В ЛСР мы наблюдали развитие более чем 150 наукоемких компаний. И каждая была сосредоточена на разработке инструмента ИИ, предназначенного для конкретной задачи в конкретном рабочем процессе. Один стартап прогнозирует важные части документа и выделяет их. Другой прогнозирует производственные дефекты и отмечает их. Третий прогнозирует подходящие ответы на обращения в службу поддержки и выдает их. Список можно продолжить. Крупные компании внедряют сотни, если не тысячи различных ИИ для выполнения различных задач своего рабочего процесса. Google разрабатывает более тысячи инструментов ИИ для самых разных задач, от отправки электронных писем до языкового перевода и управления автомобилем[99].

Прогностические машины будут влиять на большинство компаний, но постепенно и по большей части незаметно – сравнимо с тем, как ИИ улучшает приложения для фотографии в смартфоне. Он добавляет удобную сортировку, а принципиально способ использования не меняется.

Но вы читаете эту книгу, скорее всего, потому, что заинтересованы в радикальных изменениях своего бизнеса посредством ИИ. Инструменты ИИ могут менять рабочий процесс двумя способами. Первый – признание задач устаревшими и их устранение. Второй – добавление новых задач, своих для каждой компании и каждого рабочего процесса.

Рассмотрим задачу набора студентов в программу МБА – хорошо знакомый нам процесс. Возможно, вы тоже участвовали в чем-либо подобном – набирали персонал или регистрировали клиентов. Рабочий процесс набора в МБА начинается с привлечения большого количества абитуриентов и сбора их заявлений и заканчивается зачислением в программу тех, кто прошел отбор и принял приглашение. Процедура набора делится на три части: воронка продаж[100], состоящая из ряда этапов, на каждом из которых производится отсев; отбор кандидатов и рассылка приглашений; дальнейшие шаги, мотивирующие абитуриентов принять приглашения. Каждая стадия требует специального распределения ресурсов.

Цель процесса набора очевидна – набрать курс лучших студентов. Однако что значит «лучший»? Это сложный вопрос, имеющий отношение к стратегическим целям учебного заведения. Мы не будем пока учитывать, как разные определения слова «лучший» влияют на дизайн инструментов ИИ (а они действительно влияют) и задачи внутри рабочих процессов, а просто предположим, что данная организация сформулировала свое определение и теперь может отнести некоторых абитуриентов к категории лучших. На практике вторая стадия – отбор лучших и рассылка приглашений – включает в себя важные решения, касающиеся времени рассылки (в начале или в конце процесса) и предложения материального поощрения или помощи. Эти решения выходят за рамки простого определения лучших, но также прогнозируют самые эффективные методы привлечения многообещающих абитуриентов (что будет происходить позднее).

Современная система ранжирования заявок достаточно примитивна. Обычно заявления делят на три стопки: 1) обязательно зачислить; 2) зачислить, если откажется кто-то из категории 1; и 3) не зачислять. Это, в свою очередь, приводит к необходимости управления рисками, чтобы уравновесить все «за» и «против» действий, повышающих вероятность ошибок. Например, нежелательно, чтобы абитуриенты, которых следовало бы отнести к категории 1 или хотя бы 2, попали в категорию 3 по причинам, не очевидным из их заявления. Аналогично не хотелось бы допустить в категорию 1 тех, кому следует находиться в конце списка. Поскольку заявки однозначно оценивать трудно, абитуриенты распределяются по категориям под влиянием одновременно и объективных, и субъективных причин.

Предположим, что программа МБА разработала ИИ, способный на основе заявок и другой информации (видеозаписей интервью и публикаций в соцсетях) четко ранжировать абитуриентов. Для этого его обучали на данных за прошедший период – заявках студентов, впоследствии причисленных к категории лучших. Инструмент ИИ будет выполнять задачу по выбору абитуриентов, достойных получить приглашение, быстрее, дешевле и точнее. Основной вопрос в том, как эта волшебная прогностическая технология повлияет на остальную часть рабочего процесса МБА.

Наша гипотетическая технология ранжирования абитуриентов выдает прогноз, кто из них, вероятнее всего, окажется в числе лучших. Это повлияет на другие решения рабочего процесса, в том числе по поводу ранних приглашений (чтобы опередить другие учебные заведения), материальных поощрений (стипендии) и особого внимания (обеды с профессурой или ранг почетных выпускников). Все эти решения требуют поиска компромиссов, а ресурсы на них ограничены. С появлением точного списка желаемых кандидатов станет понятно, на кого тратить ресурсы. А чем больше уверенность в потенциале абитуриента, тем, вероятно, больше ресурсов в него готовы вложить.

Заметно ощутимее прогностическое ранжирование может повлиять на решения, принимаемые до подачи заявок. Хотя большинство учебных заведений хотят заполучить побольше абитуриентов, они знают: если их окажется слишком много, анализ и ранжирование усложнятся. Наша прогностическая машина существенно снизит издержки всех этапов и, как следствие, повысит отдачу от большого количества абитуриентов. Особенно в случае, если технология способна анализировать их целеустремленность (почему бы и нет, она ведь волшебная). Таким образом, школы расширят охват абитуриентов и смогут отказаться от оплаты за рассмотрение заявок, потому что их сортировка упростится настолько, что не потребует издержек с увеличением количества желающих.

В результате изменения рабочего процесса могут оказаться весьма ощутимыми. С таким методом ранжирования школы сократят время между получением заявки и отправлением приглашения.

При налаженном методе все происходит почти мгновенно, поэтому рабочий процесс и динамика конкуренции приоритетных кандидатов меняются.

Это гипотетический ИИ, но на его примере понятно, как в результате внедрения инструментов ИИ в задачи рабочего процесса они устраняются (ранжирование вручную) или добавляются (больше рекламы). Конечно, у всех компаний будут разные исходы, но в ходе разбора рабочих процессов можно проанализировать вероятность того, что прогностические машины выйдут далеко за пределы отдельных решений, для которых были разработаны.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК