Для прогностики необходимы данные
До недавнего ажиотажа вокруг ИИ возникало много шумихи по поводу большого объема данных. Их разнообразие, количество и качество заметно выросли за последние 20 лет. Изображения и тексты переводят в цифровую форму, чтобы машины могли их анализировать. Все оснащено датчиками. Такой активный интерес основан на возможности этих данных помочь людям снизить неопределенность и оставаться в курсе происходящего.
Рассмотрим улучшенные датчики сердечного ритма. Многочисленные компании и некоммерческие организации с медицинскими названиями, такие как AliveCor и Cardiio, разрабатывают продукты, использующие данные о сердечном ритме. Например, стартап Cardiogram сделал приложение для iPhone, которое получает показатели сердечного ритма от Apple Watch и выдает огромный объем информации: посекундные замеры частоты сердцебиения. Пользователи могут отслеживать, не подскакивает ли она в течение дня и повысилась или уменьшилась за год или даже за десять лет.
Изобилие данных и возможности прогностических машин открывают подобным разработкам широкие перспективы. Научные и производственные исследователи продемонстрировали, как смартфоны прогнозируют нарушения сердечного ритма («мерцательную аритмию», как говорят медики)[33]. Продукты, разрабатываемые Cardiogram, AliveCor и Cardiio с помощью прогностических машин, используют данные о сердечном ритме, необходимые для диагностики кардиологических заболеваний. Общий подход компаний заключается в том, чтобы на основе выявленных данных прогнозировать информацию о наличии у пользователя отклонений в работе сердца.
Без входных данных прогностические машины не смогут работать, поэтому их называют просто «данными», в отличие от обучающих и данных обратной связи.
Неподготовленные пользователи не улавливают в необработанных данных связи между информацией о частоте сердечных сокращений (ЧСС) и нарушением сердечного ритма. А приложение Cardiogram выявляет его с 97 %-ной точностью благодаря работе глубокой нейронной сети[34]. Отклонения в работе сердца становятся предвестниками 25 % всех инфарктов, а усовершенствования анамнеза позволят врачам вовремя назначить лечение. Для профилактики инфаркта существуют лекарства.
Но для этого потребители должны предоставить сведения о своем сердечном ритме. Машина не сможет прогнозировать риски для конкретного человека, не имея о нем необходимой информации. При наличии у прогностической машины индивидуальных данных человека она выдаст прогноз вероятности нарушений сердечного ритма.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК