Стандартная умственная работа, требующая взаимодействия (быстро растущая ценность): расширение функционала с помощью познавательной автоматики

Как организовать техническое обслуживание самолетного или автомобильного парка или, скажем, большого числа ветроэнергетических установок? Решением таких задач занимается компания General Electric (GE). Традиционно целая армия опытных и квалифицированных специалистов GE разъезжала по местам, где базировалась техника клиентов. В их обязанности входило принятие решений о том, какого рода обслуживание требуется в каждом конкретном случае. При этом специалисты руководствовались опытом и здравым смыслом, обращая внимание на то, как долго техника находится в эксплуатации и в каких условиях она работает, насколько велика нагрузка, а также на многие другие факторы. Кроме того, в задачи инженеров входило делиться своими наработками и лучшими найденными методиками с коллегами, описывая случаи из практики и отправляя материалы в электронные бюллетени и центры обработки данных, где они были доступны всем сотрудникам. Это была стандартная деятельность: выполнение ряда одинаковых действий в необходимой последовательности. Она предполагала постоянное взаимодействие (специалисты внутри каждой команды совместно занимались выполнением задач и сотрудничали с коллегами через общие обучающие платформы) и носила умственный характер, поскольку требовала принятия решений о том, какая информация необходима, а также последующего анализа этой информации с целью выбора наилучшей стратегии техобслуживания. Конечно, деятельность инженера включает в себя и физический труд (то есть непосредственно работу с техникой), но сейчас мы поговорим о сборе и анализе данных, а также о последующей диагностике. Традиционная организация производственного процесса приводила к значительному простою оборудования: клиентам то и дело приходилось ждать, пока им назначат дату обслуживания, либо техническая команда сталкивалась с нестандартной ситуацией, требовавшей получения дополнительных данных, либо центральная информационная платформа перезагружалась, и необходимо было выжидать, чтобы получить актуальные данные о новых решениях, найденных инженерами из разных бригад.

Руководители General Electric поставили перед собой следующие стратегические цели: существенное снижение времени простоя техники, проведение техобслуживания только в случае необходимости, обеспечение полевых специалистов более полной и соответствующей их потребностям информацией о лучших методах выполнения работ. Компания сумела всего этого добиться, переосмыслив деятельность технических специалистов и предоставив им в помощь искусственный интеллект со способностью к обучению, задействовав одновременно возможности сенсоров, большие данные и интернет вещей[33]. В General Electric создали так называемых «цифровых близнецов» – электронные копии обслуживаемой аппаратуры, включая самолетные двигатели, газовые турбины и ветроэнергетические установки. Сенсоры, находившиеся на реальном оборудовании, собирали данные об индивидуальных показателях техники и условиях ее работы (температура, вибрация, уровень шума и т. д.). Эти данные организовывались таким образом, что созданный с их помощью «цифровой близнец» того или иного оборудования полностью воспроизводил его работу. Специалисты GE программировали «цифрового близнеца», отрабатывая всевозможные варианты сценариев (различные нагрузки, продолжительность и условия работы и т. д.). Используя данные, полученные на программах-симуляторах, сотрудники General Electric получили возможность прогнозировать поломки и определять, какого рода ремонтные работы необходимы для реальных объектов. Программа искусственного интеллекта также в состоянии самостоятельно составлять графики техобслуживания, отправлять информацию и описания лучших методов работы полевым командам технических специалистов. «Цифровые близнецы» могут создаваться и для целых массивов оборудования (например, завода или фабрики) и техники (скажем, парка самолетов или грузовиков), давая возможность анализировать не только работу каждого отдельного агрегата, но и всего парка техники в целом.

Информация от тысяч реальных агрегатов постоянно и безостановочно поступает в программы «цифровых близнецов». Поскольку обстоятельства, влияющие на работу механизмов, и, соответственно, актуальный график технического обслуживания со временем и под влиянием разного рода обстоятельств неизбежно меняются, невозможно найти единую формулу и бездумно ее использовать. Между тем, пока техобслуживанием занимались только люди, зачастую стандартная схема действий оказывалась наилучшим из доступных решений, поскольку обеспечить индивидуальный подход в каждой из возможных ситуаций было попросту нереально. А вот с появлением автоматики возникла возможность по мере необходимости менять оптимальные алгоритмы и методики, используя обновленные данные. Системы машинного обучения позволяют технике обучаться за счет новой информации, постепенно модифицируя проактивные модели обслуживания, идентифицируя новые шаблоны работы, аномалии и направления развития. Алгоритм, обнаружив эффективное решение для одного вида техники или конкретной ситуации, способен найти для него иное применение, предложив новые стандарты для других областей деятельности. К 2017 г. в системе General Electric работало уже около 750 000 «цифровых близнецов», и к ним постоянно добавлялись новые.

В данной ситуации машинное обучение требует сочетания сенсоров, интернета вещей, больших данных и Web 2.0. Система, неспособная к машинному обучению, вынуждена полагаться на наблюдения одного клиента либо на то, что сможет усвоить и передать другим единственная команда инженеров. Оптимальная комбинация специалистов и системы, способной к машинному обучению, позволяет General Electric оперировать значительно более объемным массивом данных, аналитики и знаний, полученных от каждого из предприятий, использующих ее продукцию. В дело вступает сетевой эффект: чем большему учится компания, тем больше выгод получают клиенты, выбирая двигатели производства General Electric. В результате сеть растет, знаний становится еще больше, и этот процесс продолжается бесконечно.

Данная модель работы General Electric не только позволяет механикам продвигаться вверх по третьему участку графика ПУРР (плавно растущая ценность), но и создает перспективы для выхода на четвертый его участок (быстро растущая ценность). Это происходит благодаря способности техники за счет машинного обучения расширять возможности людей в области разработки оптимальных графиков и методик ремонта. Теперь инженеры появляются на площадке, уже владея информацией о том, какие виды технического обслуживания необходимы той или иной машине. Их знания базируются не только на собственном опыте, но и на данных, снятых с аналогичного оборудования, а также предоставленных «цифровым близнецом» машины. В итоге профессиональная ценность каждой из инженерных команд значительно возрастает, ведь они работают куда эффективнее, прибывая именно туда, где они необходимы, причем в самый оптимальный момент.